Business PreCalculus MATH 1643 Section 004, Spring 2014 Lesson 9: Linear Inequalities

Definition 1. Inequality When we replace the equal sign (=) in an equation with any of the four inequality symbols \langle , \leq , \rangle , \geq , then the resulting expression is an <u>inequality</u>.

Definition 2. <u>Domain</u> The domain of a variable in an inequality is the set of all real numbers for which both sides of the inequality are defined. For example, the domain of $\sqrt{x+1} < x$ is all real numbers greater or equal to -1. In interval notation, the domain is $[-1, \infty)$.

Definition 3. Solving Linear Inequality Solving linear inequality in one variable is similar to solving a linear equality in one variable.

Example 1. Solve the inequality: 7x - 11 < 2(x - 3)Solution:

$$7x - 11 < 2(x - 3)$$

$$7x - 11 < 2x - 6$$

$$7x - 11 + 11 < 2x - 6 + 11$$

$$7x < 2x + 5$$

$$7x - 2x < 2x + 5 - 2x$$

$$5x < 5$$

$$x < 5$$

Then the solution set is $\{x : x < 5\}$, or in interval notation $(-\infty, 5)$.

Example 2. Solve: $8 - 3x \le 2$ Solution:

$$8 - 3x \le 2$$

$$8 - 3x - 8 \le 2 - 8$$

$$-3x \le -6$$

$$\frac{-3x}{-3} \ge \frac{-6}{-3}$$

$$x \ge 2$$
(Dividing by -3, Reverse the direction of the inequality symbol)

So the solution set is $\{x : x \ge 2\}$, or in interval notation $[2, \infty)$.

Definition 4. <u>Compound Inequality</u> The combination of two or more inequalities is called a compound inequality.

Example 3. Write the solution set of the compound inequality:

$$2x + 7 \le 1$$
 or $3x - 2 < 4(x - 1)$

Solution:

 $2x + 7 \le 1$ <u>or</u> 3x - 2 < 4(x - 1)

The solution set of the compound inequality is $(-\infty, -3] \cup (2, \infty)$.

Example 4. Write the solution set of the compound inequality:

$$2(x-3) + 5 < 9$$
 and $3(1-x) - 2 \le 7$

Solution:

The solution set of the compound inequality is $(-\infty, 5) \cap [-2, \infty) = [-2, 5)$.

Remark 1. Note that $(or = \cup)$, and $(and = \cap)$.